1 背景知识
1.1 Ceph简介
Ceph是当前非常流行的开源分布式存储系统,具有高扩展性、高性能、高可靠性等优点,同时提供块存储服务(rbd)、对象存储服务(rgw)以及文件系统存储服务(cephfs)。目前也是OpenStack的主流后端存储,和OpenStack亲如兄弟,为OpenStack提供统一共享存储服务。使用Ceph作为OpenStack后端存储,具有如下优点:
- 所有的计算节点共享存储,迁移时不需要拷贝根磁盘,即使计算节点挂了,也能立即在另一个计算节点启动虚拟机(evacuate)。
- 利用COW(Copy On Write)特性,创建虚拟机时,只需要基于镜像clone即可,不需要下载整个镜像,而clone操作基本是0开销,从而实现了秒级创建虚拟机。
- Ceph RBD支持thin provisioning,即按需分配空间,有点类似Linux文件系统的sparse稀疏文件。创建一个20GB的虚拟硬盘时,最开始并不占用物理存储空间,只有当写入数据时,才按需分配存储空间。
Ceph的更多知识可以参考官方文档,这里我们只关注RBD,RBD管理的核心对象为块设备(block device),通常我们称为volume,不过Ceph中习惯称之为image(注意和OpenStack image的区别)。Ceph中还有一个pool的概念,类似于namespace,不同的pool可以定义不同的副本数、pg数、放置策略等。每个image都必须指定pool。image的命名规范为pool_name/image_name@snapshot
,比如openstack/test-volume@test-snap
,表示在openstack
pool中test-volume
image的快照test-snap
。因此以下两个命令效果是等同的:
rbd snap create --pool openstack --image test-image --snap test-snap
rbd snap create openstack/test-image@test-snap
在openstack
pool上创建一个1G的image命令为:
rbd -p openstack create --size 1024 jingh-test-1
image支持快照(snapshot)的功能,创建一个快照即保存当前image的状态,相当于git commit
操作,用户可以随时把image回滚到任意快照点上(git reset
)。创建快照命令如下:
rbd -p openstack snap create jingh-test-1@snap-1
查看rbd列表:
$ rbd -p openstack ls -l | grep jingh-test
jingh-test-1 1024M 2
jingh-test-1@snap-1 1024M 2
基于快照可以创建一个新的image,称为clone,clone不会立即复制原来的image,而是使用COW策略,即写时拷贝,只有当需要写入一个对象时,才从parent中拷贝那个对象到本地,因此clone操作基本秒级完成,并且需要注意的是基于同一个快照创建的所有image共享快照之前的image数据,因此在clone之前我们必须保护(protect)快照,被保护的快照不允许删除。clone操作类似于git branch
操作,clone一个image命令如下:
rbd -p openstack snap protect jingh-test-1@snap-1
rbd -p openstack clone jingh-test-1@snap-1 jingh-test-2
我们可以查看一个image的子image(children)有哪些,也能查看一个image是基于哪个image clone的(parent):
$ rbd -p openstack children jingh-test-1@snap-1
openstack/jingh-test-2
$ rbd -p openstack info jingh-test-2 | grep parent
parent: openstack/jingh-test-1@snap-1
以上我们可以发现jingh-test-2
是jingh-test-1
的children,而jingh-test-1
是jingh-test-2
的parent。
不断地创建快照并clone image,就会形成一条很长的image链,链很长时,不仅会影响读写性能,还会导致管理非常麻烦。可幸的是Ceph支持合并链上的所有image为一个独立的image,这个操作称为flatten
,类似于git merge
操作,flatten
需要一层一层拷贝所有顶层不存在的数据,因此通常会非常耗时。
$ rbd -p openstack flatten jingh-test-2
Image flatten: 31% complete...
此时我们再次查看其parrent-children关系:
rbd -p openstack children jingh-test-1@snap-1
此时jingh-test-1
没有children了,jingh-test-2
完全独立了。
当然Ceph也支持完全拷贝,称为copy
:
rbd -p openstack cp jingh-test-1 jingh-test-3
copy
会完全拷贝一个image,因此会非常耗时,但注意copy
不会拷贝原来的快照信息。
Ceph支持将一个RBD image导出(export
):
rbd -p openstack export jingh-test-1 jingh-1.raw
导出会把整个image导出,Ceph还支持差量导出(export-diff),即指定从某个快照点开始导出:
rbd -p openstack export-diff jingh-test-1 --from-snap snap-1 --snap snap-2 jingh-test-1-diff.raw
以上导出从快照点snap-1
到快照点snap-2
的数据。
当然与之相反的操作为import
以及import-diff
。通过export
/import
支持image的全量备份,而export-diff
/import-diff
实现了image的差量备份。
Rbd image是动态分配存储空间,通过du
命令可以查看image实际占用的物理存储空间:
$ rbd du jingh-test-1
NAME PROVISIONED USED
jingh-test-1 1024M 12288k
以上image分配的大小为1024M,实际占用的空间为12288KB。
删除image,注意必须先删除其所有快照,并且保证没有依赖的children:
rbd -p openstack snap unprotect jingh-test-1@snap-1
rbd -p openstack snap rm jingh-test-1@snap-1
rbd -p openstack rm jingh-test-1
1.2 OpenStack简介
OpenStack是一个IaaS层的云计算平台开源实现,关于OpenStack的更多介绍欢迎访问我的个人博客,这里只专注于当OpenStack对接Ceph存储系统时,基于源码分析一步步探测Ceph到底做了些什么工作。本文不会详细介绍OpenStack的整个工作流程,而只关心与Ceph相关的实现,如果有不清楚OpenStack源码架构的,可以参考我之前写的文章如何阅读OpenStack源码。
阅读完本文可以理解以下几个问题:
- 为什么上传的镜像必须要转化为raw格式?
- 如何高效上传一个大的镜像文件?
- 为什么能够实现秒级创建虚拟机?
- 为什么创建虚拟机快照需要数分钟时间,而创建volume快照能够秒级完成?
- 为什么当有虚拟机存在时,不能删除镜像?
- 为什么一定要把备份恢复到一个空卷中,而不能覆盖已经存在的volume?
- 从镜像中创建volume,能否删除镜像?
注意本文都是在基于使用Ceph存储的前提下,即Glance、Nova、Cinder都是使用的Ceph,其它情况下结论不一定成立。
另外本文会先贴源代码,很长很枯燥,你可以快速跳到总结部分查看OpenStack各个操作对应的Ceph工作。
2 Glance
2.1 Glance介绍
Glance管理的核心实体是image,它是OpenStack的核心组件之一,为OpenStack提供镜像服务(Image as Service),主要负责OpenStack镜像以及镜像元数据的生命周期管理、检索、下载等功能。Glance支持将镜像保存到多种存储系统中,后端存储系统称为store,访问镜像的地址称为location,location可以是一个http地址,也可以是一个rbd协议地址。只要实现store的driver就可以作为Glance的存储后端,其中driver的主要接口如下:
- get: 获取镜像的location。
- get_size: 获取镜像的大小。
- get_schemes: 获取访问镜像的URL前缀(协议部分),比如rbd、swift+https、http等。
- add: 上传镜像到后端存储中。
- delete: 删除镜像。
- set_acls: 设置后端存储的读写访问权限。
为了便于维护,glance store目前已经作为独立的库从Glance代码中分离出来,由项目glance_store维护。目前社区支持的store列表如下:
- filesystem: 保存到本地文件系统,默认保存
/var/lib/glance/images
到目录下。 - cinder: 保存到Cinder中。
- rbd:保存到Ceph中。
- sheepdog:保存到sheepdog中。
- swift: 保存到Swift对象存储中。
- vmware datastore: 保存到Vmware datastore中。
- http: 以上的所有store都会保存镜像数据,唯独http store比较特殊,它不保存镜像的任何数据,因此没有实现
add
方法,它仅仅保存镜像的URL地址,启动虚拟机时由计算节点从指定的http地址中下载镜像。
本文主要关注rbd store,它的源码在这里,该store的driver代码主要由国内Fei Long Wang负责维护,其它store的实现细节可以参考源码glance store drivers.
2.2 镜像上传
由前面的介绍可知,镜像上传主要由store的add
方法实现:
@capabilities.check
def add(self, image_id, image_file, image_size, context=None,
verifier=None):
checksum = hashlib.md5()
image_name = str(image_id)
with self.get_connection(conffile=self.conf_file,
rados_id=self.user) as conn:
fsid = None
if hasattr(conn, 'get_fsid'):
fsid = conn.get_fsid()
with conn.open_ioctx(self.pool) as ioctx:
order = int(math.log(self.WRITE_CHUNKSIZE, 2))
try:
loc = self._create_image(fsid, conn, ioctx, image_name,
image_size, order)
except rbd.ImageExists:
msg = _('RBD image %s already exists') % image_id
raise exceptions.Duplicate(message=msg)
...
其中注意image_file
不是一个文件,而是LimitingReader
实例,该实例保存了镜像的所有数据,通过read(bytes)
方法读取镜像内容。
从以上源码中看,glance首先获取ceph的连接session,然后调用_create_image
方法创建了一个rbd image,大小和镜像的size一样:
def _create_image(self, fsid, conn, ioctx, image_name,
size, order, context=None):
librbd = rbd.RBD()
features = conn.conf_get('rbd_default_features')
librbd.create(ioctx, image_name, size, order, old_format=False,
features=int(features))
return StoreLocation({
'fsid': fsid,
'pool': self.pool,
'image': image_name,
'snapshot': DEFAULT_SNAPNAME,
}, self.conf)
因此以上步骤通过rbd命令表达大致为:
rbd -p ${rbd_store_pool} create --size ${image_size} ${image_id}
在ceph中创建完rbd image后,接下来:
with rbd.Image(ioctx, image_name) as image:
bytes_written = 0
offset = 0
chunks = utils.chunkreadable(image_file,
self.WRITE_CHUNKSIZE)
for chunk in chunks:
offset += image.write(chunk, offset)
checksum.update(chunk)
可见Glance逐块从image_file中读取数据写入到刚刚创建的rbd image中并计算checksum,其中块大小由rbd_store_chunk_size
配置,默认为8MB。
我们接着看最后步骤:
if loc.snapshot:
image.create_snap(loc.snapshot)
image.protect_snap(loc.snapshot)
从代码中可以看出,最后步骤为创建image快照(快照名为snap)并保护起来。
假设我们上传的镜像为cirros,镜像大小为39MB,镜像uuid为d1a06da9-8ccd-4d3e-9b63-6dcd3ead29e6
,配置保存在ceph的openstack
pool中,则对应ceph的操作流程大致为:
rbd -p openstack create --size 39 d1a06da9-8ccd-4d3e-9b63-6dcd3ead29e6
rbd -p openstack snap create d1a06da9-8ccd-4d3e-9b63-6dcd3ead29e6@snap
rbd -p openstack snap protect d1a06da9-8ccd-4d3e-9b63-6dcd3ead29e6@snap
我们可以通过rbd命令验证:
jingh rbd ls -l | grep d1a06da9-8ccd-4d3e-9b63-6dcd3ead29e6
d1a06da9-8ccd-4d3e-9b63-6dcd3ead29e6 40162k 2
d1a06da9-8ccd-4d3e-9b63-6dcd3ead29e6@snap 40162k 2 yes
启示
我们前面介绍了镜像上传到Ceph的过程,省略了镜像上传到Glance的流程,但毋容置疑的是镜像肯定是通过Glance API上传到Glance中的。当镜像非常大时,由于通过Glance API走HTTP协议,导致非常耗时且占用API管理网带宽。我们可以通过rbd import
直接导入镜像的方式大幅度提高上传镜像的效率。
首先使用Glance创建一个空镜像,记下它的uuid:
glance image-create
假设uuid为d1a06da9-8ccd-4d3e-9b63-6dcd3ead29e6
,使用rbd命令直接导入镜像并创建快照:
rbd -p openstack import cirros.raw --image=d1a06da9-8ccd-4d3e-9b63-6dcd3ead29e6
rbd -p openstack snap create d1a06da9-8ccd-4d3e-9b63-6dcd3ead29e6@snap
rbd -p openstack snap protect d1a06da9-8ccd-4d3e-9b63-6dcd3ead29e6@snap
设置glance镜像location url:
FS_ID=`ceph -s | grep cluster | awk '{print $2}'`
glance location-add --url rbd://${FS_ID}/openstack/d1a06da9-8ccd-4d3e-9b63-6dcd3ead29e6/snap d1a06da9-8ccd-4d3e-9b63-6dcd3ead29e6
设置glance镜像其它属性:
glance image-update --name="cirros" \
--disk-format=raw --container-format=bare d1a06da9-8ccd-4d3e-9b63-6dcd3ead29e6
2.3 镜像删除
删除镜像就是相反的过程,即先执行unprotext
-> snap rm
-> rm
,如下:
try:
self._unprotect_snapshot(image, snapshot_name)
image.remove_snap(snapshot_name)
except rbd.ImageBusy as exc:
raise exceptions.InUseByStore()
rbd.RBD().remove(ioctx, image_name)
删除镜像必须保证当前rbd image没有子image,否则删除会失败。
3 Nova
3.1 Nova介绍
Nova管理的核心实体为server,为OpenStack提供计算服务,它是OpenStack最核心的组件。注意Nova中的server不只是指虚拟机,它可以是任何计算资源的抽象,除了虚拟机以外,也有可能是baremetal裸机、容器等。
不过我们在这里假定:
- server为虚拟机。
- image type为rbd。
- compute driver为libvirt。
启动虚拟机之前首先需要准备根磁盘(root disk),Nova称为image,和Glance一样,Nova的image也支持存储到本地磁盘、Ceph以及Cinder(boot from volume)中。需要注意的是,image保存到哪里是通过image type决定的,存储到本地磁盘可以是raw、qcow2、ploop等,如果image type为rbd,则image存储到Ceph中。不同的image type由不同的image backend负责,其中rbd的backend为nova/virt/libvirt/imageackend
中的Rbd
类模块实现。
3.2 创建虚拟机
创建虚拟机的过程不再详细分析,不清楚的可以查看我之前写的博客,我们直接进入研究Nova的libvirt driver是如何为虚拟机准备根磁盘image的,代码位于nova/virt/libvirt/driver.py
的spawn
方法,其中创建image调用了_create_image
方法。
def spawn(self, context, instance, image_meta, injected_files,
admin_password, network_info=None, block_device_info=None):
...
self._create_image(context, instance, disk_info['mapping'],
injection_info=injection_info,
block_device_info=block_device_info)
...
_create_image
方法部分代码如下:
def _create_image(self, context, instance,
disk_mapping, injection_info=None, suffix='',
disk_images=None, block_device_info=None,
fallback_from_host=None,
ignore_bdi_for_swap=False):
booted_from_volume = self._is_booted_from_volume(block_device_info)
...
# ensure directories exist and are writable
fileutils.ensure_tree(libvirt_utils.get_instance_path(instance))
...
self._create_and_inject_local_root(context, instance,
booted_from_volume, suffix,
disk_images, injection_info,
fallback_from_host)
...
该方法首先在本地创建虚拟机的数据目录/var/lib/nova/instances/${uuid}/
,然后调用了_create_and_inject_local_root
方法创建根磁盘。
def _create_and_inject_local_root(self, context, instance,
booted_from_volume, suffix, disk_images,
injection_info, fallback_from_host):
...
if not booted_from_volume:
root_fname = imagecache.get_cache_fname(disk_images['image_id'])
size = instance.flavor.root_gb * units.Gi
backend = self.image_backend.by_name(instance, 'disk' + suffix,
CONF.libvirt.images_type)
if backend.SUPPORTS_CLONE:
def clone_fallback_to_fetch(*args, **kwargs):
try:
backend.clone(context, disk_images['image_id'])
except exception.ImageUnacceptable:
libvirt_utils.fetch_image(*args, **kwargs)
fetch_func = clone_fallback_to_fetch
else:
fetch_func = libvirt_utils.fetch_image
self._try_fetch_image_cache(backend, fetch_func, context,
root_fname, disk_images['image_id'],
instance, size, fallback_from_host)
...
其中image_backend.by_name()
方法通过image type名称返回image backend
实例,这里是Rbd
。从代码中看出,如果backend支持clone操作(SUPPORTS_CLONE),则会调用backend的clone()
方法,否则通过fetch_image()
方法下载镜像。显然Ceph rbd是支持clone的。我们查看Rbd
的clone()
方法,代码位于nova/virt/libvirt/imagebackend.py
模块:
def clone(self, context, image_id_or_uri):
...
for location in locations:
if self.driver.is_cloneable(location, image_meta):
LOG.debug('Selected location: %(loc)s', {'loc': location})
return self.driver.clone(location, self.rbd_name)
...
该方法遍历Glance image的所有locations,然后通过driver.is_cloneable()
方法判断是否支持clone,若支持clone则调用driver.clone()
方法。其中driver
是Nova的storage driver,代码位于nova/virt/libvirt/storage
,其中rbd driver在rbd_utils.py
模块下,我们首先查看is_cloneable()
方法:
def is_cloneable(self, image_location, image_meta):
url = image_location['url']
try:
fsid, pool, image, snapshot = self.parse_url(url)
except exception.ImageUnacceptable as e:
return False
if self.get_fsid() != fsid:
return False
if image_meta.get('disk_format') != 'raw':
return False
# check that we can read the image
try:
return self.exists(image, pool=pool, snapshot=snapshot)
except rbd.Error as e:
LOG.debug('Unable to open image %(loc)s: %(err)s',
dict(loc=url, err=e))
return False
可见如下情况不支持clone:
- Glance中的rbd image location不合法,rbd location必须包含fsid、pool、image id,snapshot 4个字段,字段通过
/
划分。 - Glance和Nova对接的是不同的Ceph集群。
- Glance镜像非raw格式。
- Glance的rbd image不存在名为
snap
的快照。
其中尤其注意第三条,如果镜像为非raw格式,Nova创建虚拟机时不支持clone操作,因此必须从Glance中下载镜像。这就是为什么Glance使用Ceph存储时,镜像必须转化为raw格式的原因。
最后我们看clone
方法:
def clone(self, image_location, dest_name, dest_pool=None):
_fsid, pool, image, snapshot = self.parse_url(
image_location['url'])
with RADOSClient(self, str(pool)) as src_client:
with RADOSClient(self, dest_pool) as dest_client:
try:
RbdProxy().clone(src_client.ioctx,
image,
snapshot,
dest_client.ioctx,
str(dest_name),
features=src_client.features)
except rbd.PermissionError:
raise exception.Forbidden(_('no write permission on '
'storage pool %s') % dest_pool)
该方法只调用了ceph的clone
方法,可能会有人疑问都是使用同一个Ceph cluster,为什么需要两个ioctx
?这是因为Glance和Nova可能使用的不是同一个Ceph pool,一个pool对应一个ioctx
。
以上操作大致相当于如下rbd命令:
rbd clone ${glance_pool}/${镜像uuid}@snap ${nova_pool}/${虚拟机uuid}.disk
假设Nova和Glance使用的pool都是openstack
,Glance镜像uuid为d1a06da9-8ccd-4d3e-9b63-6dcd3ead29e6
,Nova虚拟机的uuid为cbf44290-f142-41f8-86e1-d63c902b38ed
,则对应的rbd命令大致为:
rbd clone \
openstack/d1a06da9-8ccd-4d3e-9b63-6dcd3ead29e6@snap \
openstack/cbf44290-f142-41f8-86e1-d63c902b38ed_disk
我们进一步验证:
jingh $ rbd -p openstack ls | grep cbf44290-f142-41f8-86e1-d63c902b38ed
cbf44290-f142-41f8-86e1-d63c902b38ed_disk
jingh $ rbd -p openstack info cbf44290-f142-41f8-86e1-d63c902b38ed_disk
rbd image 'cbf44290-f142-41f8-86e1-d63c902b38ed_disk':
size 2048 MB in 256 objects
order 23 (8192 kB objects)
block_name_prefix: rbd_data.9f756763845e
format: 2
features: layering, exclusive-lock, object-map, fast-diff, deep-flatten
flags:
create_timestamp: Wed Nov 22 05:11:17 2017
parent: openstack/d1a06da9-8ccd-4d3e-9b63-6dcd3ead29e6@snap
overlap: 40162 kB
由输出可见,Nova确实创建了一个名为cbf44290-f142-41f8-86e1-d63c902b38ed_disk
rbd image,并且它的parent为openstack/d1a06da9-8ccd-4d3e-9b63-6dcd3ead29e6@snap
。
启示
- 创建虚拟机时并没有拷贝镜像,也不需要下载镜像,而是一个简单clone操作,因此创建虚拟机基本可以在秒级完成。
- 如果镜像中还有虚拟机依赖,则不能删除该镜像,换句话说,删除镜像之前,必须删除基于该镜像创建的所有虚拟机。
3.3 创建虚拟机快照
首先说点题外话,我感觉Nova把create image和create snapshot弄混乱了,我理解的这二者的区别:
- create image:把虚拟机的根磁盘上传到Glance中。
- create snapshot: 根据image格式对虚拟机做快照,qcow2和rbd格式显然都支持快照。快照不应该保存到Glance中,由Nova或者Cinder(boot from Cinder)管理。
可事实上,Nova创建快照的子命令为image-create
,API方法也叫_action_create_image()
,之后调用的方法叫snapshot()
。而实际上,对于大多数image type,如果不是从云硬盘启动(boot from volume),其实就是create image,即上传镜像到Glance中,而非真正的snapshot。
当然只是命名的区别而已,这里对create image和create snapshot不做任何区别。
虚拟机的快照由libvirt
driver的snapshot()
方法实现,代码位于nova/virt/libvirt/driver.py
,核心代码如下:
def snapshot(self, context, instance, image_id, update_task_state):
...
root_disk = self.image_backend.by_libvirt_path(
instance, disk_path, image_type=source_type)
try:
update_task_state(task_state=task_states.IMAGE_UPLOADING,
expected_state=task_states.IMAGE_PENDING_UPLOAD)
metadata['location'] = root_disk.direct_snapshot(
context, snapshot_name, image_format, image_id,
instance.image_ref)
self._snapshot_domain(context, live_snapshot, virt_dom, state,
instance)
self._image_api.update(context, image_id, metadata,
purge_props=False)
except (NotImplementedError, exception.ImageUnacceptable) as e:
...
Nova首先通过disk_path
获取对应的image backend,这里返回的是imagebackend.Rbd
,然后调用了backend的direct_snapshot()
方法,该方法如下:
def direct_snapshot(self, context, snapshot_name, image_format,
image_id, base_image_id):
fsid = self.driver.get_fsid()
parent_pool = self._get_parent_pool(context, base_image_id, fsid)
self.driver.create_snap(self.rbd_name, snapshot_name, protect=True)
location = {'url': 'rbd://%(fsid)s/%(pool)s/%(image)s/%(snap)s' %
dict(fsid=fsid,
pool=self.pool,
image=self.rbd_name,
snap=snapshot_name)}
try:
self.driver.clone(location, image_id, dest_pool=parent_pool)
self.driver.flatten(image_id, pool=parent_pool)
finally:
self.cleanup_direct_snapshot(location)
self.driver.create_snap(image_id, 'snap', pool=parent_pool,
protect=True)
return ('rbd://%(fsid)s/%(pool)s/%(image)s/snap' %
dict(fsid=fsid, pool=parent_pool, image=image_id))
从代码中分析,大体可分为以下几个步骤:
- 获取Ceph集群的fsid。
- 对虚拟机根磁盘对应的rbd image创建一个临时快照,快照名是一个随机uuid。
- 将创建的快照保护起来(protect)。
- 基于快照clone一个新的rbd image,名称为snapshot uuid。
- 对clone的image执行flatten操作。
- 删除创建的临时快照。
- 对clone的rbd image创建快照,快照名为snap,并执行protect。
对应rbd命令,假设虚拟机uuid为cbf44290-f142-41f8-86e1-d63c902b38ed
,快照的uuid为db2b6552-394a-42d2-9de8-2295fe2b3180
,则对应rbd命令为:
# Snapshot the disk and clone it into Glance's storage pool
rbd -p openstack snap create \
cbf44290-f142-41f8-86e1-d63c902b38ed_disk@3437a9bbba5842629cc76e78aa613c70
rbd -p openstack snap protect \
cbf44290-f142-41f8-86e1-d63c902b38ed_disk@3437a9bbba5842629cc76e78aa613c70
rbd -p openstack clone \
cbf44290-f142-41f8-86e1-d63c902b38ed_disk@3437a9bbba5842629cc76e78aa613c70 \
db2b6552-394a-42d2-9de8-2295fe2b3180
# Flatten the image, which detaches it from the source snapshot
rbd -p openstack flatten db2b6552-394a-42d2-9de8-2295fe2b3180
# all done with the source snapshot, clean it up
rbd -p openstack snap unprotect \
cbf44290-f142-41f8-86e1-d63c902b38ed_disk@3437a9bbba5842629cc76e78aa613c70
rbd -p openstack snap rm \
cbf44290-f142-41f8-86e1-d63c902b38ed_disk@3437a9bbba5842629cc76e78aa613c70
# Makes a protected snapshot called 'snap' on uploaded images and hands it out
rbd -p openstack snap create db2b6552-394a-42d2-9de8-2295fe2b3180@snap
rbd -p openstack snap protect db2b6552-394a-42d2-9de8-2295fe2b3180@snap
其中3437a9bbba5842629cc76e78aa613c70
是产生的临时快照名称,它一个随机生成的uuid。
启示
其它存储后端主要耗时会在镜像上传过程,而当使用Ceph存储时,主要耗在rbd的flatten过程,因此创建虚拟机快照通常要好几分钟的时间。有人可能会疑问,为什么一定要执行flatten操作呢,直接clone不就完事了吗?社区这么做是有原因的:
- 如果不执行flatten操作,则虚拟机快照依赖于虚拟机,换句话说,虚拟机只要存在快照就不能删除虚拟机了,这显然不合理。
- 上一个问题继续延展,假设基于快照又创建虚拟机,虚拟机又创建快照,如此反复,整个rbd image的依赖会非常复杂,根本管理不了。
- 当rbd image链越来越长时,对应的IO读写性能也会越来越差。
- …
3.4 删除虚拟机
libvirt driver删除虚拟机的代码位于nova/virt/libvirt/driver.py
的destroy
方法:
def destroy(self, context, instance, network_info, block_device_info=None,
destroy_disks=True):
self._destroy(instance)
self.cleanup(context, instance, network_info, block_device_info,
destroy_disks)
注意前面的_destroy
方法其实就是虚拟机关机操作,即Nova会首先让虚拟机先关机再执行删除操作。紧接着调用cleanup()
方法,该方法执行资源的清理工作。这里我们只关注清理disks的过程:
...
if destroy_disks:
# NOTE(haomai): destroy volumes if needed
if CONF.libvirt.images_type == 'lvm':
self._cleanup_lvm(instance, block_device_info)
if CONF.libvirt.images_type == 'rbd':
self._cleanup_rbd(instance)
...
由于我们的image type为rbd,因此调用的_cleanup_rbd()
方法:
def _cleanup_rbd(self, instance):
if instance.task_state == task_states.RESIZE_REVERTING:
filter_fn = lambda disk: (disk.startswith(instance.uuid) and
disk.endswith('disk.local'))
else:
filter_fn = lambda disk: disk.startswith(instance.uuid)
LibvirtDriver._get_rbd_driver().cleanup_volumes(filter_fn)
我们只考虑正常删除操作,忽略resize撤回操作,则filter_fn
为lambda disk: disk.startswith(instance.uuid)
,即所有以虚拟机uuid开头的disk(rbd image)。需要注意,这里没有调用imagebackend
的Rbd
driver,而是直接调用storage driver
,代码位于nova/virt/libvirt/storage/rbd_utils.py
:
def cleanup_volumes(self, filter_fn):
with RADOSClient(self, self.pool) as client:
volumes = RbdProxy().list(client.ioctx)
for volume in filter(filter_fn, volumes):
self._destroy_volume(client, volume)
该方法首先获取所有的rbd image列表,然后通过filter_fn
方法过滤以虚拟机uuid开头的image,调用_destroy_volume
方法:
def _destroy_volume(self, client, volume, pool=None):
"""Destroy an RBD volume, retrying as needed.
"""
def _cleanup_vol(ioctx, volume, retryctx):
try:
RbdProxy().remove(ioctx, volume)
raise loopingcall.LoopingCallDone(retvalue=False)
except rbd.ImageHasSnapshots:
self.remove_snap(volume, libvirt_utils.RESIZE_SNAPSHOT_NAME,
ignore_errors=True)
except (rbd.ImageBusy, rbd.ImageHasSnapshots):
LOG.warning('rbd remove %(volume)s in pool %(pool)s failed',
{'volume': volume, 'pool': self.pool})
retryctx['retries'] -= 1
if retryctx['retries'] <= 0:
raise loopingcall.LoopingCallDone()
# NOTE(danms): We let it go for ten seconds
retryctx = {'retries': 10}
timer = loopingcall.FixedIntervalLoopingCall(
_cleanup_vol, client.ioctx, volume, retryctx)
timed_out = timer.start(interval=1).wait()
if timed_out:
# NOTE(danms): Run this again to propagate the error, but
# if it succeeds, don't raise the loopingcall exception
try:
_cleanup_vol(client.ioctx, volume, retryctx)
except loopingcall.LoopingCallDone:
pass
该方法最多会尝试10+1次_cleanup_vol()
方法删除rbd image,如果有快照,则会先删除快照。
假设虚拟机的uuid为cbf44290-f142-41f8-86e1-d63c902b38ed
,则对应rbd命令大致为:
for image in $(rbd -p openstack ls | grep '^cbf44290-f142-41f8-86e1-d63c902b38ed');
do
rbd -p openstack rm "$image";
done
4 Cinder
4.1 Cinder介绍
Cinder是OpenStack的块存储服务,类似AWS的EBS,管理的实体为volume。Cinder并没有实现volume provide功能,而是负责管理各种存储系统的volume,比如Ceph、fujitsu、netapp等,支持volume的创建、快照、备份等功能,对接的存储系统我们称为backend。只要实现了cinder/volume/driver.py
中VolumeDriver
类定义的接口,Cinder就可以对接该存储系统。
Cinder不仅支持本地volume的管理,还能把本地volume备份到远端存储系统中,比如备份到另一个Ceph集群或者Swift对象存储系统中,本文将只考虑从源Ceph集群备份到远端Ceph集群中的情况。
4.2 创建volume
创建volume由cinder-volume服务完成,入口为cinder/volume/manager.py
的create_volume()
方法,
def create_volume(self, context, volume, request_spec=None,
filter_properties=None, allow_reschedule=True):
...
try:
# NOTE(flaper87): Driver initialization is
# verified by the task itself.
flow_engine = create_volume.get_flow(
context_elevated,
self,
self.db,
self.driver,
self.scheduler_rpcapi,
self.host,
volume,
allow_reschedule,
context,
request_spec,
filter_properties,
image_volume_cache=self.image_volume_cache,
)
except Exception:
msg = _("Create manager volume flow failed.")
LOG.exception(msg, resource={'type': 'volume', 'id': volume.id})
raise exception.CinderException(msg)
...
Cinder创建volume的流程使用了taskflow框架,taskflow具体实现位于cinder/volume/flows/manager/create_volume.py
,我们关注其execute()
方法:
def execute(self, context, volume, volume_spec):
...
if create_type == 'raw':
model_update = self._create_raw_volume(volume, **volume_spec)
elif create_type == 'snap':
model_update = self._create_from_snapshot(context, volume,
**volume_spec)
elif create_type == 'source_vol':
model_update = self._create_from_source_volume(
context, volume, **volume_spec)
elif create_type == 'image':
model_update = self._create_from_image(context,
volume,
**volume_spec)
else:
raise exception.VolumeTypeNotFound(volume_type_id=create_type)
...
从代码中我们可以看出,创建volume分为4种类型:
- raw: 创建空白卷。
- create from snapshot: 基于快照创建volume。
- create from volume: 相当于复制一个已存在的volume。
- create from image: 基于Glance image创建一个volume。
raw
创建空白卷是最简单的方式,代码如下:
def _create_raw_volume(self, volume, **kwargs):
ret = self.driver.create_volume(volume)
...
直接调用driver的create_volume()
方法,这里driver是RBDDriver
,代码位于cinder/volume/drivers/rbd.py
:
def create_volume(self, volume):
with RADOSClient(self) as client:
self.RBDProxy().create(client.ioctx,
vol_name,
size,
order,
old_format=False,
features=client.features)
try:
volume_update = self._enable_replication_if_needed(volume)
except Exception:
self.RBDProxy().remove(client.ioctx, vol_name)
err_msg = (_('Failed to enable image replication'))
raise exception.ReplicationError(reason=err_msg,
volume_id=volume.id)
其中size
单位为MB,vol_name
为volume-${volume_uuid}
。
假设volume的uuid为bf2d1c54-6c98-4a78-9c20-3e8ea033c3db
,Ceph池为openstack
,创建的volume大小为1GB,则对应的rbd命令相当于:
rbd -p openstack create \
--new-format --size 1024 \
volume-bf2d1c54-6c98-4a78-9c20-3e8ea033c3db
我们可以通过rbd命令验证:
jingh $ rbd -p openstack ls | grep bf2d1c54-6c98-4a78-9c20-3e8ea033c3db
volume-bf2d1c54-6c98-4a78-9c20-3e8ea033c3db
create from snapshot
从快照中创建volume也是直接调用driver的方法,如下:
def _create_from_snapshot(self, context, volume, snapshot_id,
**kwargs):
snapshot = objects.Snapshot.get_by_id(context, snapshot_id)
model_update = self.driver.create_volume_from_snapshot(volume,
snapshot)
我们查看RBDDriver
的create_volume_from_snapshot()
方法:
def create_volume_from_snapshot(self, volume, snapshot):
"""Creates a volume from a snapshot."""
volume_update = self._clone(volume, self.configuration.rbd_pool,
snapshot.volume_name, snapshot.name)
if self.configuration.rbd_flatten_volume_from_snapshot:
self._flatten(self.configuration.rbd_pool, volume.name)
if int(volume.size):
self._resize(volume)
return volume_update
从代码中看出,从snapshot中创建快照分为3个步骤:
- 从rbd快照中执行clone操作。
- 如果
rbd_flatten_volume_from_snapshot
配置为True
,则执行flatten
操作。 - 如果创建中指定了
size
,则执行resize
操作。
假设新创建的volume的uuid为e6bc8618-879b-4655-aac0-05e5a1ce0e06
,快照的uuid为snapshot-e4e534fc-420b-45c6-8e9f-b23dcfcb7f86
,快照的源volume uuid为bf2d1c54-6c98-4a78-9c20-3e8ea033c3db
,指定的size为2,rbd_flatten_volume_from_snapshot
为False
(默认值),则对应的rbd命令为:
rbd clone openstack/volume-bf2d1c54-6c98-4a78-9c20-3e8ea033c3db@snapshot-e4e534fc-420b-45c6-8e9f-b23dcfcb7f86 openstack/volume-e6bc8618-879b-4655-aac0-05e5a1ce0e06
rbd resize --size 2048 openstack/volume-e6bc8618-879b-4655-aac0-05e5a1ce0e06
从源码上分析,Cinder从快照中创建volume时,用户可以配置是否执行flatten操作:
- 如果执行flatten操作,则从快照中创建volume可能需要数分钟的时间,创建后可以随时删除快照。
- 如果不执行flatten操作,则需要注意在删除所有基于该快照创建的volume之前,不能删除该快照,也不能删除快照的源volume。
第二点可能会更复杂,比如基于快照创建了一个volume,然后基于该volume又创建了快照,基于该快照创建了volume,则用户不能删除源volume,不能删除快照。
create from volume
从volume中创建volume,需要指定源volume id(source_volid
):
def _create_from_source_volume(self, context, volume, source_volid,
**kwargs):
# NOTE(harlowja): if the source volume has disappeared this will be our
# detection of that since this database call should fail.
#
# NOTE(harlowja): likely this is not the best place for this to happen
# and we should have proper locks on the source volume while actions
# that use the source volume are underway.
srcvol_ref = objects.Volume.get_by_id(context, source_volid)
model_update = self.driver.create_cloned_volume(volume, srcvol_ref)
我们直接查看driver的create_cloned_volume()
方法,该方法中有一个很重要的配置项rbd_max_clone_depth
,即允许rbd image clone允许的最长深度,如果rbd_max_clone_depth <= 0
,则表示不允许clone:
# Do full copy if requested
if self.configuration.rbd_max_clone_depth <= 0:
with RBDVolumeProxy(self, src_name, read_only=True) as vol:
vol.copy(vol.ioctx, dest_name)
self._extend_if_required(volume, src_vref)
return
此时相当于rbd的copy命令。
如果rbd_max_clone_depth > 0
:
# Otherwise do COW clone.
with RADOSClient(self) as client:
src_volume = self.rbd.Image(client.ioctx, src_name)
LOG.debug("creating snapshot='%s'", clone_snap)
try:
# Create new snapshot of source volume
src_volume.create_snap(clone_snap)
src_volume.protect_snap(clone_snap)
# Now clone source volume snapshot
LOG.debug("cloning '%(src_vol)s@%(src_snap)s' to "
"'%(dest)s'",
{'src_vol': src_name, 'src_snap': clone_snap,
'dest': dest_name})
self.RBDProxy().clone(client.ioctx, src_name, clone_snap,
client.ioctx, dest_name,
features=client.features)
这个过程和创建虚拟机快照非常相似,二者都是先基于源image创建snapshot,然后基于snapshot执行clone操作,区别在于是否执行flatten操作,创建虚拟机快照时一定会执行flatten操作,而该操作则取决于clone深度:
depth = self._get_clone_depth(client, src_name)
if depth >= self.configuration.rbd_max_clone_depth:
dest_volume = self.rbd.Image(client.ioctx, dest_name)
try:
dest_volume.flatten()
except Exception as e:
...
try:
src_volume.unprotect_snap(clone_snap)
src_volume.remove_snap(clone_snap)
except Exception as e:
...
如果当前depth超过了允许的最大深度rbd_max_clone_depth
则执行flatten操作,并删除创建的快照。
假设创建的volume uuid为3b8b15a4-3020-41a0-80be-afaa35ed5eef
,源volume uuid为bf2d1c54-6c98-4a78-9c20-3e8ea033c3db
,则对应的rbd命令为:
VOLID=3b8b15a4-3020-41a0-80be-afaa35ed5eef
SOURCE_VOLID=bf2d1c54-6c98-4a78-9c20-3e8ea033c3db
CINDER_POOL=openstack
# Do full copy if rbd_max_clone_depth <= 0.
if [[ "$rbd_max_clone_depth" -le 0 ]]; then
rbd copy ${CINDER_POOL}/volume-${SOURCE_VOLID} openstack/volume-${VOLID}
exit 0
fi
# Otherwise do COW clone.
# Create new snapshot of source volume
rbd snap create ${CINDER_POOL}/volume-${SOURCE_VOLID}@volume-${VOLID}.clone_snap
rbd snap protect ${CINDER_POOL}/volume-${SOURCE_VOLID}@volume-${VOLID}.clone_snap
# Now clone source volume snapshot
rbd clone \
${CINDER_POOL}/volume-${SOURCE_VOLID}@volume-${VOLID}.clone_snap \
${CINDER_POOL}/volume-${VOLID}
# If dest volume is a clone and rbd_max_clone_depth reached,
# flatten the dest after cloning.
depth=$(get_clone_depth ${CINDER_POOL}/volume-${VOLID})
if [[ "$depth" -ge "$rbd_max_clone_depth" ]]; then
# Flatten destination volume
rbd flatten ${CINDER_POOL}/volume-${VOLID}
# remove temporary snap
rbd snap unprotect \
${CINDER_POOL}/volume-${SOURCE_VOLID}@volume-${VOLID}.clone_snap
rbd snap rm ${CINDER_POOL}/volume-${SOURCE_VOLID}@volume-${VOLID}.clone_snap
fi
当rbd_max_clone_depth > 0
且depth < rbd_max_clone_depth
时,通过rbd命令验证:
jingh $ rbd info volume-3b8b15a4-3020-41a0-80be-afaa35ed5eef
rbd image 'volume-3b8b15a4-3020-41a0-80be-afaa35ed5eef':
size 1024 MB in 256 objects
order 22 (4096 kB objects)
block_name_prefix: rbd_data.ae2e437c177a
format: 2
features: layering, exclusive-lock, object-map, fast-diff, deep-flatten
flags:
create_timestamp: Wed Nov 22 12:32:09 2017
parent: openstack/volume-bf2d1c54-6c98-4a78-9c20-3e8ea033c3db@volume-3b8b15a4-3020-41a0-80be-afaa35ed5eef.clone_snap
overlap: 1024 MB
可见volume-3b8b15a4-3020-41a0-80be-afaa35ed5eef
的parent为:
volume-bf2d1c54-6c98-4a78-9c20-3e8ea033c3db@volume-3b8b15a4-3020-41a0-80be-afaa35ed5eef.clone_snap`
create from image
从镜像中创建volume,这里假定Glance和Cinder都使用的同一个Ceph集群,则Cinder可以直接从Glance中clone,不需要下载镜像:
def _create_from_image(self, context, volume,
image_location, image_id, image_meta,
image_service, **kwargs):
...
model_update, cloned = self.driver.clone_image(
context,
volume,
image_location,
image_meta,
image_service)
...
我们查看driver的clone_image()
方法:
def clone_image(self, context, volume,
image_location, image_meta,
image_service):
# iterate all locations to look for a cloneable one.
for url_location in url_locations:
if url_location and self._is_cloneable(
url_location, image_meta):
_prefix, pool, image, snapshot = \
self._parse_location(url_location)
volume_update = self._clone(volume, pool, image, snapshot)
volume_update['provider_location'] = None
self._resize(volume)
return volume_update, True
return ({}, False)
rbd直接clone,这个过程和创建虚拟机基本一致。如果创建volume时指定了新的大小,则调用rbd resize执行扩容操作。
假设新创建的volume uuid为87ee1ec6-3fe4-413b-a4c0-8ec7756bf1b4
,glance image uuid为db2b6552-394a-42d2-9de8-2295fe2b3180
,则rbd命令为:
rbd clone openstack/db2b6552-394a-42d2-9de8-2295fe2b3180@snap \
openstack/volume-87ee1ec6-3fe4-413b-a4c0-8ec7756bf1b4
if [[ -n "$size" ]]; then
rbd resize --size $size \
openstack/volume-87ee1ec6-3fe4-413b-a4c0-8ec7756bf1b4
fi
通过rbd命令验证如下:
jingh $ rbd info openstack/volume-87ee1ec6-3fe4-413b-a4c0-8ec7756bf1b4
rbd image 'volume-87ee1ec6-3fe4-413b-a4c0-8ec7756bf1b4':
size 3072 MB in 768 objects
order 22 (4096 kB objects)
block_name_prefix: rbd_data.affc488ac1a
format: 2
features: layering, exclusive-lock, object-map, fast-diff, deep-flatten
flags:
create_timestamp: Wed Nov 22 13:07:50 2017
parent: openstack/db2b6552-394a-42d2-9de8-2295fe2b3180@snap
overlap: 2048 MB
可见新创建的rbd image的parent为openstack/db2b6552-394a-42d2-9de8-2295fe2b3180@snap
。
注:其实我个人认为该方法需要执行flatten
操作,否则当有volume存在时,Glance不能删除镜像,相当于Glance服务依赖于Cinder服务状态,这有点不合理。
4.3 创建快照
创建快照入口为cinder/volume/manager.py
的create_snapshot()
方法,该方法没有使用taskflow框架,而是直接调用的driver create_snapshot()
方法,如下:
...
try:
utils.require_driver_initialized(self.driver)
snapshot.context = context
model_update = self.driver.create_snapshot(snapshot)
...
except Exception:
...
RBDDriver
的create_snapshot()
方法非常简单:
def create_snapshot(self, snapshot):
"""Creates an rbd snapshot."""
with RBDVolumeProxy(self, snapshot.volume_name) as volume:
snap = utils.convert_str(snapshot.name)
volume.create_snap(snap)
volume.protect_snap(snap)
因此volume的快照其实就是对应Ceph rbd image快照,假设snapshot uuid为e4e534fc-420b-45c6-8e9f-b23dcfcb7f86
,volume uuid为bf2d1c54-6c98-4a78-9c20-3e8ea033c3db
,则对应的rbd命令大致如下:
rbd -p openstack snap create \
volume-bf2d1c54-6c98-4a78-9c20-3e8ea033c3db@snapshot-e4e534fc-420b-45c6-8e9f-b23dcfcb7f86
rbd -p openstack snap protect \
volume-bf2d1c54-6c98-4a78-9c20-3e8ea033c3db@snapshot-e4e534fc-420b-45c6-8e9f-b23dcfcb7f86
从这里我们可以看出虚拟机快照和volume快照的区别,虚拟机快照需要从根磁盘rbd image快照中clone然后flatten,而volume的快照只需要创建rbd image快照,因此虚拟机快照通常需要数分钟的时间,而volume快照能够秒级完成。
4.4 创建volume备份
在了解volume备份之前,首先需要理清快照和备份的区别。我们可以通过git
类比,快照类似git commit
操作,只是表明数据提交了,主要用于回溯与回滚。当集群奔溃导致数据丢失,通常不能从快照中完全恢复数据。而备份则类似于git push
,把数据安全推送到了远端存储系统中,主要用于保证数据安全,即使本地数据丢失,也能从备份中恢复。Cinder的磁盘备份也支持多种存储后端,这里我们只考虑volume和backup driver都是Ceph的情况,其它细节可以参考Cinder数据卷备份原理与实践。生产中volume和backup必须使用不同的Ceph集群,这样才能保证当volume ceph集群挂了,也能从另一个集群中快速恢复数据。本文只是为了测试功能,因此使用的是同一个Ceph集群,通过pool区分,volume使用openstack
pool,而backup使用cinder_backup
pool。
另外,Cinder支持增量备份,用户可以指定--incremental
参数决定使用的是全量备份还是增量备份。但是对于Ceph后端来说,Cinder总是先尝试执行增量备份,只有当增量备份失败时,才会fallback到全量备份,而不管用户有没有指定--incremental
参数。尽管如此,我们仍然把备份分为全量备份和增量备份两种情况,注意只有第一次备份才有可能是全量备份,剩下的备份都是增量备份。
全量备份(第一次备份)
我们直接查看CephBackupDriver
的backup()
方法,代码位于cinder/backup/drivers/ceph.py
。
if self._file_is_rbd(volume_file):
# If volume an RBD, attempt incremental backup.
LOG.debug("Volume file is RBD: attempting incremental backup.")
try:
updates = self._backup_rbd(backup, volume_file,
volume.name, length)
except exception.BackupRBDOperationFailed:
LOG.debug("Forcing full backup of volume %s.", volume.id)
do_full_backup = True
这里主要判断源volume是否是rbd,即是否使用Ceph后端,只有当volume也使用Ceph存储后端情况下才能执行增量备份。
我们查看_backup_rbd()
方法:
from_snap = self._get_most_recent_snap(source_rbd_image)
base_name = self._get_backup_base_name(volume_id, diff_format=True)
image_created = False
with rbd_driver.RADOSClient(self, backup.container) as client:
if base_name not in self.rbd.RBD().list(ioctx=client.ioctx):
...
# Create new base image
self._create_base_image(base_name, length, client)
image_created = True
else:
...
from_snap
为上一次备份时的快照点,由于我们这是第一次备份,因此from_snap
为None
,base_name
格式为volume-%s.backup.base
,这个base是做什么的呢?我们查看下_create_base_image()
方法就知道了:
def _create_base_image(self, name, size, rados_client):
old_format, features = self._get_rbd_support()
self.rbd.RBD().create(ioctx=rados_client.ioctx,
name=name,
size=size,
old_format=old_format,
features=features,
stripe_unit=self.rbd_stripe_unit,
stripe_count=self.rbd_stripe_count)
可见base其实就是一个空卷,大小和之前的volume大小一致。
也就是说如果是第一次备份,在backup的Ceph集群首先会创建一个大小和volume一样的空卷。
我们继续看源码:
def _backup_rbd(self, backup, volume_file, volume_name, length):
...
new_snap = self._get_new_snap_name(backup.id)
LOG.debug("Creating backup snapshot='%s'", new_snap)
source_rbd_image.create_snap(new_snap)
try:
self._rbd_diff_transfer(volume_name, rbd_pool, base_name,
backup.container,
src_user=rbd_user,
src_conf=rbd_conf,
dest_user=self._ceph_backup_user,
dest_conf=self._ceph_backup_conf,
src_snap=new_snap,
from_snap=from_snap)
def _get_new_snap_name(self, backup_id):
return utils.convert_str("backup.%s.snap.%s"
% (backup_id, time.time()))
首先在源volume中创建了一个新快照,快照名为backup.${backup_id}.snap.${timestamp}
,然后调用了rbd_diff_transfer()
方法:
def _rbd_diff_transfer(self, src_name, src_pool, dest_name, dest_pool,
src_user, src_conf, dest_user, dest_conf,
src_snap=None, from_snap=None):
src_ceph_args = self._ceph_args(src_user, src_conf, pool=src_pool)
dest_ceph_args = self._ceph_args(dest_user, dest_conf, pool=dest_pool)
cmd1 = ['rbd', 'export-diff'] + src_ceph_args
if from_snap is not None:
cmd1.extend(['--from-snap', from_snap])
if src_snap:
path = utils.convert_str("%s/%s@%s"
% (src_pool, src_name, src_snap))
else:
path = utils.convert_str("%s/%s" % (src_pool, src_name))
cmd1.extend([path, '-'])
cmd2 = ['rbd', 'import-diff'] + dest_ceph_args
rbd_path = utils.convert_str("%s/%s" % (dest_pool, dest_name))
cmd2.extend(['-', rbd_path])
ret, stderr = self._piped_execute(cmd1, cmd2)
if ret:
msg = (_("RBD diff op failed - (ret=%(ret)s stderr=%(stderr)s)") %
{'ret': ret, 'stderr': stderr})
LOG.info(msg)
raise exception.BackupRBDOperationFailed(msg)
方法调用了rbd命令,先通过export-diff
子命令导出源rbd image的差量文件,然后通过import-diff
导入到backup的image中。
假设源volume的uuid为075c06ed-37e2-407d-b998-e270c4edc53c
,大小为1GB,backup uuid为db563496-0c15-4349-95f3-fc5194bfb11a
,这对应的rbd命令大致如下:
VOLUME_ID=075c06ed-37e2-407d-b998-e270c4edc53c
BACKUP_ID=db563496-0c15-4349-95f3-fc5194bfb11a
rbd -p cinder_backup create --size 1024 volume-${VOLUME_ID}.backup.base
new_snap=volume-${VOLUME_ID}@backup.${BACKUP_ID}.snap.1511344566.67
rbd -p openstack snap create ${new_snap}
rbd export-diff --pool openstack ${new_snap} - \
| rbd import-diff --pool cinder_backup - volume-${VOLUME_ID}.backup.base
我们可以通过rbd命令验证如下:
# volume ceph cluster
jingh $ rbd -p openstack snap ls volume-075c06ed-37e2-407d-b998-e270c4edc53c
SNAPID NAME SIZE TIMESTAMP
52 backup.db563496-0c15-4349-95f3-fc5194bfb11a.snap.1511344566.67 1024 MB Wed Nov 22 17:56:15 2017
# backup ceph cluster
jingh $ rbd -p cinder_backup ls -l
NAME SIZE PARENT FMT PROT LOCK
volume-075c06ed-37e2-407d-b998-e270c4edc53c.backup.base 1024M 2
volume-075c06ed-37e2-407d-b998-e270c4edc53c.backup.base@backup.db563496-0c15-4349-95f3-fc5194bfb11a.snap.1511344566.67 1024M 2
从输出上看,源volume创建了一个快照,ID为52
,在backup的Ceph集群中创建了一个空卷volume-075c06ed-37e2-407d-b998-e270c4edc53c.backup.base
,并且包含一个快照backup.xxx.snap.1511344566.67
,该快照是通过import-diff
创建的。
增量备份
前面的过程和全量备份一样,我们直接跳到_backup_rbd()
方法:
from_snap = self._get_most_recent_snap(source_rbd_image)
with rbd_driver.RADOSClient(self, backup.container) as client:
if base_name not in self.rbd.RBD().list(ioctx=client.ioctx):
...
else:
if not self._snap_exists(base_name, from_snap, client):
errmsg = (_("Snapshot='%(snap)s' does not exist in base "
"image='%(base)s' - aborting incremental "
"backup") %
{'snap': from_snap, 'base': base_name})
LOG.info(errmsg)
raise exception.BackupRBDOperationFailed(errmsg)
首先获取源volume对应rbd image的最新快照最为parent,然后判断在backup的Ceph集群的base中是否存在相同的快照(根据前面的全量备份,一定存在和源volume一样的快照。
我们继续看后面的部分:
new_snap = self._get_new_snap_name(backup.id)
source_rbd_image.create_snap(new_snap)
try:
before = time.time()
self._rbd_diff_transfer(volume_name, rbd_pool, base_name,
backup.container,
src_user=rbd_user,
src_conf=rbd_conf,
dest_user=self._ceph_backup_user,
dest_conf=self._ceph_backup_conf,
src_snap=new_snap,
from_snap=from_snap)
if from_snap:
source_rbd_image.remove_snap(from_snap)
这个和全量备份基本是一样的,唯一区别在于此时from_snap
不是None
,并且后面会删掉from_snap
。_rbd_diff_transfer
方法可以翻前面代码。
假设源volume uuid为075c06ed-37e2-407d-b998-e270c4edc53c
,backup uuid为e3db9e85-d352-47e2-bced-5bad68da853b
,parent backup uuid为db563496-0c15-4349-95f3-fc5194bfb11a
,则对应的rbd命令大致如下:
VOLUME_ID=075c06ed-37e2-407d-b998-e270c4edc53c
BACKUP_ID=e3db9e85-d352-47e2-bced-5bad68da853b
PARENT_ID=db563496-0c15-4349-95f3-fc5194bfb11a
rbd -p openstack snap create \
volume-${VOLUME_ID}@backup.${BACKUP_ID}.snap.1511348180.27
rbd export-diff --pool openstack \
--from-snap backup.${PARENT_ID}.snap.1511344566.67 \
openstack/volume-${VOLUME_ID}@backup.${BACKUP_ID}.snap.1511348180.27 - \
| rbd import-diff --pool cinder_backup - \
cinder_backup/volume-${VOLUME_ID}.backup.base
rbd -p openstack snap rm \
volume-${VOLUME_ID}.backup.base@backup.${PARENT_ID}.snap.1511344566.67
我们通过rbd命令验证如下:
jingh $ rbd -p openstack snap ls volume-075c06ed-37e2-407d-b998-e270c4edc53c
SNAPID NAME SIZE TIMESTAMP
53 backup.e3db9e85-d352-47e2-bced-5bad68da853b.snap.1511348180.27 1024 MB Wed Nov 22 18:56:20 2017
jingh $ rbd -p cinder_backup ls -l
NAME SIZE PARENT FMT PROT LOCK
volume-075c06ed-37e2-407d-b998-e270c4edc53c.backup.base 1024M 2
volume-075c06ed-37e2-407d-b998-e270c4edc53c.backup.base@backup.db563496-0c15-4349-95f3-fc5194bfb11a.snap.1511344566.67 1024M 2
volume-075c06ed-37e2-407d-b998-e270c4edc53c.backup.base@backup.e3db9e85-d352-47e2-bced-5bad68da853b.snap.1511348180.27 1024M 2
和我们分析的结果一致,源volume的快照会删除旧的而只保留最新的一个,backup则会保留所有的快照。
4.5 备份恢复
备份恢复是备份的逆过程,即从远端存储还原数据到本地。备份恢复的源码位于cinder/backup/drivers/ceph.py
的restore()
方法,该方法直接调用了_restore_volume()
方法,因此我们直接看_restore_volume()
方法:
def _restore_volume(self, backup, volume, volume_file):
length = int(volume.size) * units.Gi
base_name = self._get_backup_base_name(backup.volume_id,
diff_format=True)
with rbd_driver.RADOSClient(self, backup.container) as client:
diff_allowed, restore_point = \
self._diff_restore_allowed(base_name, backup, volume,
volume_file, client)
其中_diff_restore_allowed()
是一个非常重要的方法,该方法判断是否支持通过直接导入方式恢复,我们查看该方法实现:
def _diff_restore_allowed(self, base_name, backup, volume, volume_file,
rados_client):
rbd_exists, base_name = self._rbd_image_exists(base_name,
backup.volume_id,
rados_client)
if not rbd_exists:
return False, None
restore_point = self._get_restore_point(base_name, backup.id)
if restore_point:
if self._file_is_rbd(volume_file):
if volume.id == backup.volume_id:
return False, restore_point
if self._rbd_has_extents(volume_file.rbd_image):
return False, restore_point
return True, restore_point
从该方法中我们可以看出支持差量导入方式恢复数据,需要满足以下所有条件:
- backup集群对应volume的rbd base image必须存在。
- 恢复点必须存在,即backup base image对应的快照必须存在。
- 恢复目标的volume必须是RBD,即volume的存储后端也必须是Ceph。
- 恢复目标的volume必须是空卷,既不支持覆盖已经有内容的image。
- 恢复目标的volume uuid和backup的源volume uuid不能是一样的,即不能覆盖原来的volume。
换句话说,虽然Cinder支持将数据还复到已有的volume(包括源volume)中,但如果使用Ceph后端就不支持增量恢复,导致效率会非常低。
因此如果使用Ceph存储后端,官方文档中建议将备份恢复到空卷中(不指定volume),不建议恢复到已有的volume中。
Note that Cinder supports restoring to a new volume or the original volume the backup was taken from. For the latter case, a full copy is enforced since this was deemed the safest action to take. It is therefore recommended to always restore to a new volume (default).
这里假定我们恢复到空卷中,命令如下:
cinder backup-restore --name jingh-restore-1 \
e3db9e85-d352-47e2-bced-5bad68da853b
注意我们没有指定--volume
参数。此时执行增量恢复,代码实现如下:
def _diff_restore_rbd(self, backup, restore_file, restore_name,
restore_point, restore_length):
rbd_user = restore_file.rbd_user
rbd_pool = restore_file.rbd_pool
rbd_conf = restore_file.rbd_conf
base_name = self._get_backup_base_name(backup.volume_id,
diff_format=True)
before = time.time()
try:
self._rbd_diff_transfer(base_name, backup.container,
restore_name, rbd_pool,
src_user=self._ceph_backup_user,
src_conf=self._ceph_backup_conf,
dest_user=rbd_user, dest_conf=rbd_conf,
src_snap=restore_point)
except exception.BackupRBDOperationFailed:
raise
self._check_restore_vol_size(backup, restore_name, restore_length,
rbd_pool)
可见增量恢复非常简单,仅仅调用前面介绍的_rbd_diff_transfer()
方法把backup Ceph集群对应的base image的快照export-diff
到volume的Ceph集群中,并调整大小。
假设backup uuid为e3db9e85-d352-47e2-bced-5bad68da853b
,源volume uuid为075c06ed-37e2-407d-b998-e270c4edc53c
,目标volume uuid为f65cf534-5266-44bb-ad57-ddba21d9e5f9
,则对应的rbd命令为:
BACKUP_ID=e3db9e85-d352-47e2-bced-5bad68da853b
SOURCE_VOLUME_ID=075c06ed-37e2-407d-b998-e270c4edc53c
DEST_VOLUME_ID=f65cf534-5266-44bb-ad57-ddba21d9e5f9
rbd export-diff --pool cinder_backup \
cinder_backup/volume-${SOURCE_VOLUME_ID}.backup.base@backup.${BACKUP_ID}.snap.1511348180.27 - \
| rbd import-diff --pool openstack - openstack/volume-${DEST_VOLUME_ID}
rbd -p openstack resize --size ${new_size} volume-${DEST_VOLUME_ID}
如果不满足以上5个条件之一,则Cinder会执行全量备份,全量备份就是一块一块数据写入:
def _transfer_data(self, src, src_name, dest, dest_name, length):
chunks = int(length / self.chunk_size)
for chunk in range(0, chunks):
before = time.time()
data = src.read(self.chunk_size)
dest.write(data)
dest.flush()
delta = (time.time() - before)
rate = (self.chunk_size / delta) / 1024
# yield to any other pending backups
eventlet.sleep(0)
rem = int(length % self.chunk_size)
if rem:
dest.write(data)
dest.flush()
# yield to any other pending backups
eventlet.sleep(0)
这种情况下效率很低,非常耗时,不建议使用。
5 总结
5.1 Glance
1. 上传镜像
rbd -p ${GLANCE_POOL} create --size ${SIZE} ${IMAGE_ID}
rbd -p ${GLANCE_POOL} snap create ${IMAGE_ID}@snap
rbd -p ${GLANCE_POOL} snap protect ${IMAGE_ID}@snap
2. 删除镜像
rbd -p ${GLANCE_POOL} snap unprotect ${IMAGE_ID}@snap
rbd -p ${GLANCE_POOL} snap rm ${IMAGE_ID}@snap
rbd -p ${GLANCE_POOL} rm ${IMAGE_ID}
5.2 Nova
1 创建虚拟机
rbd clone ${GLANCE_POOL}/${IMAGE_ID}@snap ${NOVA_POOL}/${SERVER_ID}_disk
2 创建虚拟机快照
# Snapshot the disk and clone it into Glance's storage pool
rbd -p ${NOVA_POOL} snap create ${SERVER_ID}_disk@${RANDOM_UUID}
rbd -p ${NOVA_POOL} snap protect ${SERVER_ID}_disk@${RANDOM_UUID}
rbd clone ${NOVA_POOL}/${SERVER_ID}_disk@${RANDOM_UUID} ${GLANCE_POOL}/${IMAGE_ID}
# Flatten the image, which detaches it from the source snapshot
rbd -p ${GLANCE_POOL} flatten ${IMAGE_ID}
# all done with the source snapshot, clean it up
rbd -p ${NOVA_POOL} snap unprotect ${SERVER_ID}_disk@${RANDOM_UUID}
rbd -p ${NOVA_POOL} snap rm ${SERVER_ID}_disk@${RANDOM_UUID}
# Makes a protected snapshot called 'snap' on uploaded images and hands it out
rbd -p ${GLANCE_POOL} snap create ${IMAGE_ID}@snap
rbd -p ${GLANCE_POOL} snap protect ${IMAGE_ID}@snap
3 删除虚拟机
for image in $(rbd -p ${NOVA_POOL} ls | grep "^${SERVER_ID}");
do rbd -p ${NOVA_POOL} rm "$image";
done
5.3 Cinder
1 创建volume
(1) 创建空白卷
rbd -p ${CINDER_POOL} create --new-format --size ${SIZE} volume-${VOLUME_ID}
(2) 从快照中创建
rbd clone \
${CINDER_POOL}/volume-${SOURCE_VOLUME_ID}@snapshot-${SNAPSHOT_ID} \
${CINDER_POOL}/volume-${VOLUME_ID}
rbd resize --size ${SIZE} openstack/volume-${VOLUME_ID}
(3) 从volume中创建
# Do full copy if rbd_max_clone_depth <= 0.
if [[ "$rbd_max_clone_depth" -le 0 ]]; then
rbd copy \
${CINDER_POOL}/volume-${SOURCE_VOLUME_ID} ${CINDER_POOL}/volume-${VOLUME_ID}
exit 0
fi
# Otherwise do COW clone.
# Create new snapshot of source volume
rbd snap create \
${CINDER_POOL}/volume-${SOURCE_VOLUME_ID}@volume-${VOLUME_ID}.clone_snap
rbd snap protect \
${CINDER_POOL}/volume-${SOURCE_VOLUME_ID}@volume-${VOLUME_ID}.clone_snap
# Now clone source volume snapshot
rbd clone \
${CINDER_POOL}/volume-${SOURCE_VOLUME_ID}@volume-${VOLUME_ID}.clone_snap \
${CINDER_POOL}/volume-${VOLUME_ID}
# If dest volume is a clone and rbd_max_clone_depth reached,
# flatten the dest after cloning.
depth=$(get_clone_depth ${CINDER_POOL}/volume-${VOLUME_ID})
if [[ "$depth" -ge "$rbd_max_clone_depth" ]]; then
# Flatten destination volume
rbd flatten ${CINDER_POOL}/volume-${VOLUME_ID}
# remove temporary snap
rbd snap unprotect \
${CINDER_POOL}/volume-${SOURCE_VOLUME_ID}@volume-${VOLUME_ID}.clone_snap
rbd snap rm \
${CINDER_POOL}/volume-${SOURCE_VOLUME_ID}@volume-${VOLUME_ID}.clone_snap
fi
(4) 从镜像中创建
rbd clone ${GLANCE_POOL}/${IMAGE_ID}@snap ${CINDER_POOL}/volume-${VOLUME_ID}
if [[ -n "${SIZE}" ]]; then
rbd resize --size ${SIZE} ${CINDER_POOL}/volume-${VOLUME_ID}
fi
2 创建快照
rbd -p ${CINDER_POOL} snap create volume-${VOLUME_ID}@snapshot-${SNAPSHOT_ID}
rbd -p ${CINDER_POOL} snap protect volume-${VOLUME_ID}@snapshot-${SNAPSHOT_ID}
3 创建备份
(1) 第一次备份
rbd -p ${BACKUP_POOL} create --size \
${VOLUME_SIZE} volume-${VOLUME_ID}.backup.base
NEW_SNAP=volume-${VOLUME_ID}@backup.${BACKUP_ID}.snap.${TIMESTAMP}
rbd -p ${CINDER_POOL} snap create ${NEW_SNAP}
rbd export-diff ${CINDER_POOL}/volume-${VOLUME_ID}${NEW_SNAP} - \
| rbd import-diff --pool ${BACKUP_POOL} - volume-${VOLUME_ID}.backup.base
(2) 增量备份
rbd -p ${CINDER_POOL} snap create \
volume-${VOLUME_ID}@backup.${BACKUP_ID}.snap.${TIMESTAMP}
rbd export-diff --pool ${CINDER_POOL} \
--from-snap backup.${PARENT_ID}.snap.${LAST_TIMESTAMP} \
${CINDER_POOL}/volume-${VOLUME_ID}@backup.${BACKUP_ID}.snap.${TIMESTRAMP} - \
| rbd import-diff --pool ${BACKUP_POOL} - \
${BACKUP_POOL}/volume-${VOLUME_ID}.backup.base
rbd -p ${CINDER_POOL} snap rm \
volume-${VOLUME_ID}.backup.base@backup.${PARENT_ID}.snap.${LAST_TIMESTAMP}
4 备份恢复
rbd export-diff --pool ${BACKUP_POOL} \
volume-${SOURCE_VOLUME_ID}.backup.base@backup.${BACKUP_ID}.snap.${TIMESTRAMP} - \
| rbd import-diff --pool ${CINDER_POOL} - volume-${DEST_VOLUME_ID}
rbd -p ${CINDER_POOL} resize --size ${new_size} volume-${DEST_VOLUME_ID}